Quantcast
Channel: No Huddle Offense
Viewing all articles
Browse latest Browse all 34

Python DTrace consumer meets the web

$
0
0

I had look at my Python DTrace consumer yesterday night and realized it need a bit an overhaul. I already demoed that you can make some visualization with it – like life updating callgraphs etc. Still it missed some basic functionality. For example I did only support some DTrace aggregation actions like sum, min, max and count. Now I added support for avg, quantize and lquantize.

Now I just needed to write about 50 LOC to do something nice :-) Those ~50 lines are the implementation of an WSGI app using Mako as a template engine. Embedded in the Mako templates are Google Charts. And those charts actually show information coming out of the Python consumer. Now all what is left, is to point my browser to my SmartOS machine and get up-to-date graphs! For example a piechart which shows system calls by process:

Python DTrace consumer

Click to enlarge

Or using quantize I can browse a nice read size distribution – aka: how much bytes do my processes usual read?:

Python based DTrace consumer

Click to enlarge

With all this it is also possible to plot graphs on the latency of node.js apps :-) :

Click to enlarge

Again documentation on writing DTrace consumers is almost non-existent. But with some ‘inspiration’ from Bryan Cantrill and the original C based consumer I was able to get it work.


Viewing all articles
Browse latest Browse all 34

Trending Articles